opencv系列25--直方图比较 [ api:compareHist ]


        概述

        对输入的两张图像计算得到直方图H1与H2,归一化到相同的尺度空间,然后可以通过计算H1与H2的之间的距离得到两个直方图的相似程度进而比较图像本身的相似程度。Opencv提供的比较方法有四种:

        -Correlation 相关性比较

        -Chi-Square 卡方比较

        -Intersection 十字交叉性

        -Bhattacharyya distance 巴氏距离


        相关性计算(CV_COMP_CORREL)

q1.png


        卡方计算(CV_COMP_CHISQR)

q2.png

H1,H2分别表示两个图像的直方图数据



        十字计算(CV_COMP_INTERSECT)

q3.png

H1,H2分别表示两个图像的直方图数据


        巴氏距离计算(CV_COMP_BHATTACHARYYA )

pic5.png

H1,H2分别表示两个图像的直方图数据


        步骤

        1,首先把图像从RGB色彩空间转换到HSV色彩空间cvtColor

        2,计算图像的直方图,然后归一化到[0~1]之间calcHist和normalize;

        3,使用上述四种比较方法之一进行比较compareHist


        相关API cv::compareHist

        compareHist(

                InputArray h1,    // 直方图数据,下同

                InputArray H2,

                int method    // 比较方法,上述四种方法之一

        )   


        代码实例

#
#
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace std;
using namespace cv;

string convertToString(double d);
int main(int argc, char** argv) {
	Mat base, test1, test2;
	Mat hsvbase, hsvtest1, hsvtest2;
        base = imread("D:/linuxkiss/images/leo.jpg");
	if (!base.data) {
		printf("could not load image...\n");
		return -1;
	}
        test1 = imread("D:/linuxkiss/images/max.png");
        test2 = imread("D:/linuxkiss/images/may.png");

	cvtColor(base, hsvbase, CV_BGR2HSV);
	cvtColor(test1, hsvtest1, CV_BGR2HSV);
	cvtColor(test2, hsvtest2, CV_BGR2HSV);

	int h_bins = 50; int s_bins = 60;     
	int histSize[] = { h_bins, s_bins };
	// hue varies from 0 to 179, saturation from 0 to 255     
	float h_ranges[] = { 0, 180 };     
	float s_ranges[] = { 0, 256 };
	const float* ranges[] = { h_ranges, s_ranges };
	// Use the o-th and 1-st channels     
	int channels[] = { 0, 1 };
	MatND hist_base;
	MatND hist_test1;
	MatND hist_test2;

	calcHist(&hsvbase, 1,  channels, Mat(), hist_base, 2, histSize, ranges, true, false);
	normalize(hist_base, hist_base, 0, 1, NORM_MINMAX, -1, Mat());

	calcHist(&hsvtest1, 1, channels, Mat(), hist_test1, 2, histSize, ranges, true, false);
	normalize(hist_test1, hist_test1, 0, 1, NORM_MINMAX, -1, Mat());

	calcHist(&hsvtest2, 1, channels, Mat(), hist_test2, 2, histSize, ranges, true, false);
	normalize(hist_test2, hist_test2, 0, 1, NORM_MINMAX, -1, Mat());
	
        //调用相关api
	double basebase = compareHist(hist_base, hist_base, CV_COMP_INTERSECT);
	double basetest1 = compareHist(hist_base, hist_test1, CV_COMP_INTERSECT);
	double basetest2 = compareHist(hist_base, hist_test2, CV_COMP_INTERSECT);
	double tes1test2 = compareHist(hist_test1, hist_test2, CV_COMP_INTERSECT);
	printf("test1 compare with test2 correlation value :%f", tes1test2);

	Mat test12;
	test2.copyTo(test12);
	putText(base, convertToString(basebase), Point(50, 50), CV_FONT_HERSHEY_COMPLEX, 1, Scalar(0, 0, 255), 2, LINE_AA);
	putText(test1, convertToString(basetest1), Point(50, 50), CV_FONT_HERSHEY_COMPLEX, 1, Scalar(0, 0, 255), 2, LINE_AA);
	putText(test2, convertToString(basetest2), Point(50, 50), CV_FONT_HERSHEY_COMPLEX, 1, Scalar(0, 0, 255), 2, LINE_AA);
	putText(test12, convertToString(tes1test2), Point(50, 50), CV_FONT_HERSHEY_COMPLEX, 1, Scalar(0, 0, 255), 2, LINE_AA);
	
	namedWindow("base", CV_WINDOW_AUTOSIZE);
	namedWindow("test1", CV_WINDOW_AUTOSIZE);
	namedWindow("test2", CV_WINDOW_AUTOSIZE);

	imshow("base", base);
	imshow("test1", test1);
	imshow("test2", test2);
	imshow("test12", test12);

	waitKey(0);
	return 0;
}

string convertToString(double d) {
	ostringstream os;
	if (os << d)
		return os.str();
	return "invalid conversion";
}


上一篇 下一篇